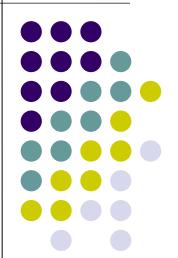
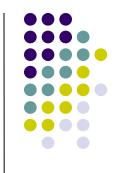
ロードマップ検討会の活動報告


第5回宇宙エレベーター学会 (JpSEC: Japan Space Elevator Conference)

平成25年2月23日


一般社団法人 宇宙エレベーター協会 フェロー

土田 哲

(法人会員 アーストラック・コーポレーション 代表取締役社長)

宇宙エレベーターロードマップ検討会とは

- 第2回宇宙エレベーター学会で発案され、それ以来、 宇宙エレベーター協会の有志で、立ち上げたもの
- その活動が国際的にも評価され、国際宇宙航行アカデミー(IAA)の 宇宙エレベータ検討委員会の「ロードマップ検討」は、我々に任されることになった。
- 2012年12月には、IAAによる2013年最終提言案の事務局提出完。

くお話しすること>

- 1. どうして、日本だけが盛り上がってるのか?
- 2. ロードマップ検討会の活動
- 3. シアトルでのロードマップ検討ワークショップ
- 4. 国際宇宙会議IAC2013ナポリ

宇宙エレベーターどうして日本だけがもりあがっているのか?

- アメリカでは2005年から5年間NASAの支援で実施した競技会が終了
- 欧州では、欧州経済危機により学会の実施が中断されている。
 - ▶ なんと、競技会も学会も実施しているのは、この日本だけ!
- 米国人からの質問
 - A) 「何故日本は、宇宙エレベータに関する活動がアクティブなのか?」
 - B) 「日本のアニメやSFではどうしてしばしば宇宙エレベータが登場するのか」

宇宙エレベーターどうして日本だけがもりあがっているのか?

- 世界に行って感じること
 - A) 様々なアニメーションで、未来の変化に対する免疫ができている若者がたくさんできている。
 - B) 賞金がないと競技会に参加しない欧米勢と、なくても参加する日本 勢
 - C) 中堅どころ(現役)の人たちが、踏ん張っている。
- ・ 「効率や単年度の収支だけが評価対象の経済活動」では、まったく評価されない種類のもの。これは、日本人の日本人らしいところで、日本人はお金儲けには向いていない民族なのだと思う。

それが、かえって、世界を動かす原動力にもなるのだと信じてやまない。

構成メンバー、宇宙エレベータ協会理事 佐々木、会員日大青木先生、 東海大 佐藤先生、会員有志、日大理工学部の学生

シアトルでのロードマップ検討ワークショップ (8月25日~27日@航空博物館)

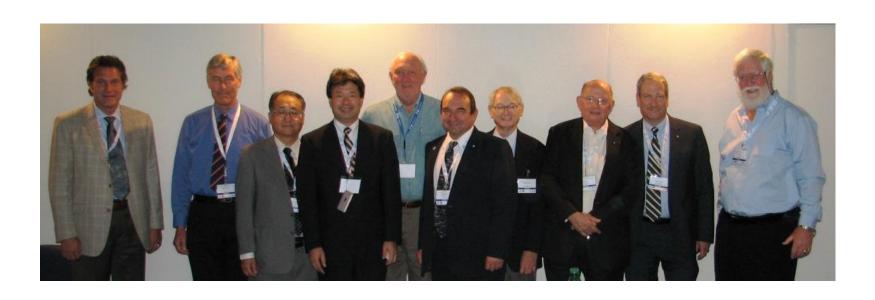
日大甲斐先生、東海大佐藤先生、日大青木研竹澤さん、土田

シアトルでのロードマップ検討ワークショップ (8月25日~27日@航空博物館)

- ●「冷静に」宇宙エレベーターに必要な技術 の定義とその動向(将来予測)をインプット
 - A) 経産省/NEDOが作成している「技術戦略マップ」は、本当に有用。
 - B) カーボンナノチューブの研究者がいま、何を苦労しているのかを説明し、何故、一筋縄でいかないのかをじっくりと話してきた。
 - C) 宇宙船に代わる「テザークライマー」という乗り物について、宇宙エレベータが実用化された時の想定質量(積み荷込みの重さ)が、今の技術では、積み荷はおろか、システム質量が想定質量の数倍になってしまうことを説明した。

国際宇宙会議IAC2013ナポリ

- 国際宇宙会議には、毎年、3000名ほどの科学者・技術者・関係研究者(宇宙法、ビジネス他)が参加。
- 今年は、スペースーX社のファルコン9によるドラゴン補給船の国際宇宙ステーションがドッキングされ民間宇宙利用の話があったり、トップオブエージェンシーというセッション(各国宇宙機関のトップが集まるがパネルディスカッション)に中国の代表がようやく参加したりと話題は事欠かなかった。
- 国際宇宙ステーションの セッションは、関係者が 中心に集まっていただけ で、元気がなかった。
- 反面、宇宙太陽光発電、 宇宙デブリ回収、 宇宙エレベータ等の 将来モノセッションには、 多数の参加者が 集まっていた。

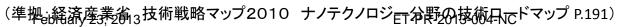


国際宇宙会議IAC2013ナポリ

- 国際宇宙航行アカデミーの宇宙エレベータ検討委員会メンバーは、 みなさんが宇宙エレベーターを早く実現したいとおっしゃいます。
- その中で、材料業界や宇宙業界の将来技術動向を調査したうえで、「冷静」かつ「論理」的に整理したロードマップは、時として、委員会メンバーには不評(要は、みなさんもっと早く実現させたい)で、その説明や調整に苦労しました。

宇宙エレベーターロードマップ

<IAA実現性評価報告用ロードマップ>



	類似システムの 存在有無	実現期待 年度	2010	2020	2030	2040	2050	2060
宇宙エレベータ主要顧客	(宇宙太陽光発電シ	/ステム)	軌道	直上検証	宇宙	太陽光発	電所建設工	上事
宇宙エレベータ第1号 建設スケジュール	년 1	=宙エレベータ 技術の研究・開 の軌道	を構成する 発、宇宙空 上検証	個別	製造と軌道 証・実証研		É	営業運転
	- 宇宙	エレベーター ステム要求					ョエレベー 直上デモン	・タの宇宙で ・ストレーショ
<構成品の個別実現時期>					念設計、ミッ ((要件)定業 ミ現性評価	ション定義 &、システ <i>ム</i>	、システム 要求S開発	要
ケーブル材料	存在 (強度不足)	2050's		次のス -	ライド参照	_		バータ建 要な強度
カウンターウェイト	存在?	TBDL	7				0	
静止軌道ステーション	存在	TBDL		今後.	、個別口-	ードマッフ	を作成	
宇宙船(エレベータ)	存在	2070		熱対策	、配電技術	<u>│</u> 超軽 及び超軸	を量機体製造 発量リニアモ	技術ータ技術
80キロ高まで伸びる橋 (対流圏の気象対策として宇宙エレベータを高度80キロまでにし、 そこまでは橋で上昇することを検討中)	<u>存在しない</u>	未定	<u></u> 10m	Model <u></u>	Production			
海上基地	存在	未定						
ヘリコプターによる輸送	存在	未定	-	今後.	、個別口-	ードマッフ	プを作成	10
コントロールセンター	存在	未定						

宇宙エレベーターロードマップ

<IAA実現性評価報告用ロードマップ>

								_(
ケーブル材料(カーボンナノチューブ)	実現期待 年度	2010	2020	2030	2040	2050	2060	
基本技術(研究開発)	-	-	-	-	-	-	-	
大量生産(構造・品質・量産化)・・・コスト削減	2020	_		<mark>2020年時</mark>	点でのナ	ノマテリア	שעו	
用途に耐える品質制御	2017			<mark>構造制御</mark> 々	<mark>o加工技術</mark>	<mark>の技術道</mark>	i 展を	
高伝導カーボンナノチューブ	2019			注意深く確理時期	『認し、宇宙 朝の再評価		- タ実	
構造制御 - 位置・方向・本数・直径制御	2014			シルサテ	初 V Z Y J ロT IL	I//· 火·安 。		
加工技術 - ナノレベルでの加工・欠陥制御	2020							
応用技術 (製品)	-	-	-	-	-	-	-	
IT·情報通信 - 大規模集積回路(LSI)配線材料	2016							
電界放出ディスプレィ	2020	_	_					
薄膜トランジスター	2030		_					
伸縮自在・プリント加工可能なロジックIC	2040			_	_			
環境・エネルギー	-	-	-	-	-	-	-	
高出力・高エネルギー密度キャパシター	2013							
燃料電池用電極触媒	2015							
構造材・バイオサイエンス	-	-	-	-	-	-	-	
防護服·防火服	2020	<u> </u>	_					
自動車・飛行機等の構造材	2025							
ロボット部材(人工筋肉・センサー)	2030		_	_				
宇宙エレベータ	2050							

宇宙エレベーターロードマップ

<IAA実現性評価報告用ロードマップ>

ケーブルの問題以外に、「宇宙船」自体の軽量化が必要。所要性能 のものを現在の技術水準で作ると目標の5倍の質量になってしまう		質量(トン)			
りものを現在の技術が挙じむ	Fると日保の5倍の貝 <u>里になりてしまり</u>	2012年の実力	目標質量		
電力配電システム	バッテリー	3.0	0.5		
	太陽電池、電磁波やレーザによる給電システム等	2.0	0.6		
駆動システム	リニアモータ	3.3	1.0		
	車軸動作メカニズム	6.3	1.0		
	車輪・ブレーキ等	0.78	0.1		
	構造材	7.8	1.0		
列車を構成する材料	放射線防護、与圧キャビン				
	断熱•排熱材料	5.0	1.0		
	宇宙デブリ防護バンパー				
制御・通信	自動制御システム	0.70	0.5		
	無線通信システム	0.78	0.5		
February 23, 201 合計	ET-PR-2013-004-NC	<u>28.96</u>	5.7 1		